Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543692

RESUMO

Infectious bronchitis virus (IBV) induces severe economic losses in chicken farms due to the emergence of new variants leading to vaccine breaks. The studied IBV strains belong to Massachusetts (Mass), Canadian 4/91, and California (Cal) 1737 genotypes that are prevalent globally. This study was designed to compare the impact of these three IBV genotypes on primary and secondary lymphoid organs. For this purpose, one-week-old specific pathogen-free chickens were inoculated with Mass, Canadian 4/91, or Cal 1737 IBV variants, keeping a mock-infected control. We examined the IBV replication in primary and secondary lymphoid organs. The molecular, histopathological, and immunohistochemical examinations revealed significant differences in lesion scores and viral distribution in these immune organs. In addition, we observed B-cell depletion in the bursa of Fabricius and the spleen with a significant elevation of T cells in these organs. Further studies are required to determine the functional consequences of IBV replication in lymphoid organs.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Canadá , Galinhas , Vírus da Bronquite Infecciosa/genética , California , Genótipo , Massachusetts
2.
Front Vet Sci ; 11: 1338563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482170

RESUMO

Infectious bronchitis virus (IBV) is a respiratory virus causing atropism in multiple body systems of chickens. Recently, the California 1737/04 (CA1737/04) IBV strain was identified as one of the circulating IBV variants among poultry operations in North America. Here, the pathogenicity and tissue tropism of CA1737/04 IBV strain in specific-pathogen-free (SPF) hens were characterized in comparison to Massachusetts (Mass) IBV. In 30 weeks-old SPF hens, Mass or CA1737/04 IBV infections were carried out, while the third group was maintained as a control group. Following infection, we evaluated clinical signs, egg production, viral shedding, serology, necropsy examination, and histopathology during a period of 19 days. Also, certain tissue affinity parameters were investigated, which involved the localization of viral antigens and the detection of viral RNA copies in designated tissues. Our findings indicate that infection with CA1737/04 or Mass IBV strain could induce significant clinical signs, reduced egg production, and anti-IBV antibodies locally in oviduct wash and systemically in serum. Both IBV strains showed detectable levels of viral RNA copies and induced pathology in respiratory, renal, enteric, and reproductive tissues. However, the CA1737/04 IBV strain had higher pathogenicity, higher tissue tropism, and higher replication in the kidney, large intestine, and different segments of the oviduct compared to the Mass IBV strain. Both IBV strains shed viral genome from the cloacal route, however, the Mass IBV infected hens shed higher IBV genome loads via the oropharyngeal route compared to CA1737/04 IBV-infected hens. Overall, the current findings could contribute to a better understanding of CA1737/04 IBV pathogenicity in laying hens.

3.
J Wildl Dis ; 60(2): 461-473, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334201

RESUMO

Orf virus (genus Parapoxvirus) has been associated with gross skin lesions on muskoxen (Ovibos moschatus) from Victoria Island, Nunavut, Canada, where muskox populations are experiencing population declines. Orf virus causes painful proliferative and necrotizing dermatitis upon viral replication and shedding, which may lead to animal morbidity or mortality through secondary infections and starvation. Herpesvirus, known to cause gross lesions on skin and mucosa during active viral replication, has also been documented in muskoxen but to date has not been associated with clinical disease. Our objective was to characterize the variation of orf virus and herpesvirus in wild muskoxen of the Canadian Arctic. Tissue samples including gross skin lesions from the nose, lips, and/or legs were opportunistically collected from muskoxen on Victoria Island, Nunavut and Northwest Territories, and mainland Nunavut, Canada, from 2015 to 2017. Sampled muskoxen varied in age, sex, location, hunt type, and body condition. Tissues from 60 muskoxen were tested for genetic evidence of orf virus and herpesvirus infection using PCR targeting key viral genes. Tissues from 38 muskoxen, including 15 with gross lesions, were also examined for histological evidence of orf virus and herpesvirus infection. Eleven muskoxen (10 from Victoria Island and one from mainland Nunavut) with gross lesions had microscopic lesions consistent with orf virus infection. Muskox rhadinovirus 1, a gammaherpesvirus endemic to muskoxen, was detected in 33 (55%) muskoxen including 17 with gross lesions. In all tissues examined, there was no histological evidence of herpesvirus-specific disease. Sequencing and characterization of amplified PCR products using phylogenetic analysis indicated that a strain of orf virus, which appears to be unique, is likely to be endemic in muskoxen from Victoria Island and mainland Nunavut. Many of the muskoxen are also subclinically infected with a known muskox-endemic strain of herpesvirus.


Assuntos
Infecções por Herpesviridae , Vírus do Orf , Rhadinovirus , Animais , Canadá/epidemiologia , Vírus do Orf/genética , Filogenia , Ruminantes , Infecções por Herpesviridae/veterinária
4.
Poult Sci ; 103(3): 103433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232618

RESUMO

Necrotic enteritis (NE) is a poultry intestinal disease caused by virulent strains of the bacterium Clostridium perfringens (C. perfringens). This anaerobic bacterium produces a wide range of enzymes and toxins in the gut which leads to NE development. It is generally accepted by the poultry veterinarians that netB-positive C. perfringens strains are virulent and netB-negative strains do not cause NE. However, NE pathogenesis remains unclear as contradictory results have been reported. The use of experimental in vivo models is a valuable tool to understand the pathogenesis of a disease. In this study, a chicken ligated loop model was used to determine the virulence status of 79 C. perfringens strains from various geographical locations, sources, and genotype profiles. According to our model and based on histologic lesion scoring, 9 C. perfringens strains were classified as commensal, 35 as virulent, and 34 as highly virulent. The virulence of only 1 C. perfringens strain could not be classified as its lesion score was variable (from <10 to >15). In general, NE lesions were more severe in intestinal loops inoculated with netB-positive C. perfringens strains than those inoculated with netB-negative strains. The prevalence of netB among strains classified as commensal, virulent, and highly virulent was 56% (5/9), 54%, (19/35), and 59% (20/34). These results suggest that NetB is not required to cause NE lesions and that other factors are also involved. The classification of the virulence status of C. perfringens strains should not be based solely on the presence or absence of this toxin. Therefore, the use of an in vivo model is essential to distinguish commensal from virulent strains of C. perfringens.


Assuntos
Galinhas , Doenças das Aves Domésticas , Animais , Clostridium perfringens/genética , Composição de Bases , Virulência , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA/veterinária , Necrose/veterinária
5.
J Virol Methods ; 324: 114859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061673

RESUMO

The quantitative polymerase chain reaction (qPCR) technique is an extensively used molecular tool for the detection and quantification of viral genome load. However, since the qPCR assay is a relative quantification method that relies on an external calibration curve it has a lower assay precision and sensitivity. The digital PCR (dPCR) technique is a good alternative to the qPCR assay as it offers highly precise and direct quantification of viral genome load in samples. In this study, performance characteristics such as the quantification range, sensitivity, precision, and specificity of the dPCR technique was compared to qPCR technique for the detection and quantification of IBV genome loads in serial dilutions of IBV positive plasmid DNA, and IBV infected chicken tissue and swab samples. The quantification range of the qPCR assay was wider than that of the dPCR assay, however dPCR had a higher sensitivity compared to qPCR. The precision of quantification of DNA in plasmid samples in terms of repeatability and reproducibility of results was higher when using the dPCR assay compared to qPCR assay. The quantification results of IBV genome load in infected samples by the qPCR and dPCR assays displayed a high correlation. Hence, our findings suggest that dPCR could be used in avian virology research for improved precision and sensitivity in detection and quantification of viral genome loads.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Vírus da Bronquite Infecciosa/genética , Reprodutibilidade dos Testes , DNA , Galinhas , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
Virus Res ; 339: 199281, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995965

RESUMO

The emergence of the Canadian Delmarva (DMV)/1639 infectious bronchitis virus (IBV) type strains was associated with egg production disorders in Eastern Canadian layer operations. While developing vaccines for novel IBV variants is not typically a reasonable approach, the consideration of an autogenous vaccine becomes more appealing, particularly when the new variant presents significant economic challenges. The current study aimed to compare the efficacies of two vaccination programs that included heterologous live priming by Massachusetts (Mass) and Connecticut (Conn) type vaccines followed by either a commercial inactivated Mass type vaccine or a locally prepared autogenous inactivated DMV/1639 type vaccine against DMV/1639 IBV challenge. The protection parameters evaluated were egg production, viral shedding, dissemination of the virus in tissues, gross and microscopic lesions, and immunological responses. The challenge with the DMV/1639 caused severe consequences in the non-vaccinated laying hens including significant drop in egg production, production of low-quality eggs, serious damage to the reproductive organs, and yolk peritonitis. The two vaccination programs protected the layers from the poor egg-laying performance and the pathology. The vaccination program incorporating the autogenous inactivated DMV/1639 type vaccine was more effective in reducing vial loads in renal and reproductive tissues. This was associated with a higher virus neutralization titer compared to the group that received the commercial inactivated Mass type vaccine. Additionally, the autogenous vaccine boost led to a significant reduction in the viral shedding compared to the non-vaccinated laying hens. However, both vaccination programs induced significant level of protection considering all parameters examined. Overall, the findings from this study underscore the significance of IBV vaccination for protecting laying hens.


Assuntos
Autovacinas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Feminino , Galinhas , Vacinas de Produtos Inativados , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Canadá , Vacinas Atenuadas
7.
Viruses ; 15(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140526

RESUMO

Infectious bronchitis virus (IBV) is an avian coronavirus that causes a disease in chickens known as infectious bronchitis (IB). The pathogenesis of IBV and the host immune responses against it depend on multiple factors such as the IBV variant, breed and age of the chicken, and the environment provided by the management. Since there is limited knowledge about the influence of the sex of chickens in the pathogenesis of IBV, in this study we aim to compare IBV pathogenesis and host immune responses in young male and female chickens. One-week-old specific pathogen-free (SPF) White Leghorn male and female chickens were infected with Canadian Delmarva (DMV)/1639 IBV variant at a dose of 1 × 106 embryo infectious dose (EID)50 by the oculo-nasal route while maintaining uninfected controls, and these chickens were euthanized and sampled 4- and 11-days post-infection (dpi). No significant difference was observed between the infected male and female chickens in IBV shedding, IBV genome load in the trachea, lung, kidney, bursa of Fabricius (BF), thymus, spleen, and cecal tonsils (CT), and IBV-induced lesion in all the examined tissues at both 4 and 11 dpi. In addition, there was no significant difference in the percentage of IBV immune-positive area observed between the infected male and female chickens in all tissues except for the kidney, which expressed an increased level of IBV antigen in infected males compared with females at both 4 and 11 dpi. The percentage of B lymphocytes was not significantly different between infected male and female chickens in all the examined tissues. The percentage of CD8+ T cells was not significantly different between infected male and female chickens in all the examined tissues except in the trachea at 11 dpi, where female chickens had higher recruitment when compared with male chickens. Overall, although most of the findings of this study suggest that the sex of chickens does not play a significant role in the pathogenesis of IBV and the host immune response in young chickens, marginal differences in viral replication and host responses could be observed to indicate that IBV-induced infection in male chickens is more severe.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Masculino , Feminino , Galinhas , Vírus da Bronquite Infecciosa/fisiologia , Canadá , Traqueia , Imunidade
8.
Viruses ; 15(10)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896873

RESUMO

Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5-9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Feminino , Humanos , Escherichia coli/genética , Bacteriófagos/genética , Galinhas , Filogenia , Infecções por Escherichia coli/veterinária , Colífagos/genética
9.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896880

RESUMO

Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Adjuvantes de Vacinas , Herpesvirus Galináceo 1/fisiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Vacinação/veterinária , Vacinas Sintéticas , Herpesvirus Meleagrídeo 1/genética , Perus
10.
Vet Microbiol ; 285: 109874, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716091

RESUMO

The tumor microenvironment (TME) is generated by the cross-talk among tumor cells, immune system cells, and stromal cells. The TME generated by Marek's disease virus (MDV) is suggested to display an immunosuppressive milieu due to immune inhibitory molecules and cytokines which are possibly induced by MDV-transformed cells and regulatory T cells. Both anti-tumor and pro-tumor gamma delta (γδ) T cells are reported in human cancer. Although anti-tumor like and pro-tumor like γδ T cells are found in MDV-infected chickens at the later phase of infection, how the TME affects circulating and tissue-resident γδ T cells has not been investigated. Here, we demonstrated that the supernatant of the cultured splenocytes derived from MDV-challenegd chickens inhibited interferon (IFN)-γ production and CD25 expression by T cell receptor (TCR)γδ-stimulated tissue-resident γδ T cells, but the supernatant of the cultured MDV-transformed cell line did not affect γδ T cell activation. TCRγδ-stimulated circulating γδ T cells were influenced neither by the supernatant of the cultured splenocytes derived from MDV-challenegd chickens nor by the supernatant of the cultured MDV-transformed cell line. Taken together, activation and IFN-γ production by tissue-resident γδ T cells can be inhibited in the TME generated by MDV while tumor attracted circulating γδ T cells may not be influenced in activation and IFN-γ production by the TME generated by MDV.

11.
Virology ; 587: 109852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531823

RESUMO

Infectious bronchitis virus (IBV) that primarily causes respiratory infection in chickens, disseminate to multiple body systems leading to pathology, results in economic losses to poultry industry. IBV replicates in the bursa of Fabricius (BF), Harderian gland (HG), cecal tonsils (CT), and spleen. The objective of this study was to investigate the immunosuppressive effect of IBV Delmarva (DMV/1639) variant in chickens. Specific pathogen free chickens were infected with the IBV DMV/1639 variant while maintaining an age-matched uninfected control group. At predetermined time points, subsets of the infected and control chickens were observed for changes in body weights and pathological changes. The histopathological lesions were observed in the CT and BF, with minimal lesions in the thymus and spleen. The mRNA expression of pro-inflammatory mediators suggested immunomodulation by IBV, favoring viral replication. Further studies are warranted to observe the functional impact of the IBV DMV/1639 variant's replication in immune organs.

12.
Vaccines (Basel) ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37515032

RESUMO

Infectious bronchitis virus (IBV) causes infectious bronchitis disease in chickens. IBV primarily infects the upper respiratory tract and then disseminates to other body systems including gastrointestinal, reproductive, and urinary systems. Unlike original IBV serotypes, the novel IBV variants target lymphoid organs, but information on this is scarce. In this study, we aim to evaluate the impact of the presence of maternal antibodies on IBV infection in primary and secondary lymphoid organs. Maternal antibody free, specific pathogen free (SPF) hens were divided into vaccinated and non-vaccinated groups. The progeny male chicks from these hens were divided into four groups; vaccinated challenged (VC), non-vaccinated challenged (NVC), vaccinated non-challenged (VNC), and non-vaccinated non-challenged (NVNC). The challenge groups were given 1 × 106 embryo infectious dose (EID)50 of IBV Delmarva (DMV)/1639 by the oculo-nasal route and non-challenge groups were given saline. The serum anti-IBV antibody titer was significantly higher in challenged groups compared to non-challenged groups. The IBV genome load was significantly lower in the VC group than NVC group in oropharyngeal and cloacal swabs and in bursa of Fabricius (BF) and cecal tonsils (CT). The histopathological lesion scores were significantly lower in VC group than NVC group in BF and CT. These findings suggest that the presence of maternal antibody in chicks could provide some degree of protection against IBV infection in BF and CT.

13.
Vet Immunol Immunopathol ; 261: 110623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37364440

RESUMO

Infectious bronchitis virus (IBV) infection can be associated with respiratory, renal, and/or reproductive diseases in chickens. Under natural conditions, conjunctiva, mucosa of upper respiratory tract, and cloaca are the main routes of IBV entry. Experimentally, the study of IBV infection involved various routes of inoculation. This study investigated the impact of adding the trachea as a potential route of viral entry to the oculo-nasal infection on the host responses, pathogenicity, and tissue tropism of the Canadian IBV Delmarva (DMV/1639) strain in laying chickens. Specific-pathogen-free laying chickens were divided into three experimental groups: control group (Con group), oculo-nasal challenged group (ON group), and oculo-nasal/intratracheal challenged group (ON/IT group); all groups were observed for 12 days post-infection (dpi). The clinical signs and reduction in egg production in the ON/IT group started slightly earlier compared to the ON group. At 12 dpi, the gross lesions in the ON/IT group were confined to the ovary, while the ON group showed regressed ovary and atrophied oviduct. Only the ON group showed significantly higher microscopic lesion scores in the lung, kidney, magnum, and uterus compared to the control group at 12 dpi. The oviduct tissues of the ON group showed a significant increase in B cells infiltration compared to ON/IT and control groups. The viral shedding (detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR)), tissue tropism (detected either by qRT-PCR or immunohistochemistry (IHC)), T/natural killer cells infiltration in reproductive tract (detected by IHC), and antibody-mediated immune responses (measured by enzyme-linked immunosorbent assay) showed similar patterns in the ON and ON/IT groups.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Feminino , Animais , Galinhas , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/diagnóstico , Canadá , Imunidade
14.
Viruses ; 15(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37112828

RESUMO

Vaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA-polymerase of the virus. The study identified Methyl Rosmarinate, Cianidanol, Royleanone, and 6,7-Dehydroroyleanone as dual-target inhibitors against any two of the key proteins. At the same time, 7-alpha-Acetoxyroyleanone from Rosmarinus officinalis was found to be a multi-target protein inhibitor against all three proteins. The potential multi-target inhibitor was subjected to molecular dynamics simulations to assess the stability of the protein-ligand complexes along with the corresponding reference ligands. The findings specified stable interactions of 7-alpha-Acetoxyroyleanone with the protein targets. The results based on the in silico study indicate that the phytocompounds can potentially inhibit the essential proteins of the Infectious Bronchitis virus; however, in vitro and in vivo studies are required for validation. Nevertheless, this study is a significant step in exploring the use of botanicals in feed to control Infectious Bronchitis infections in poultry.


Assuntos
Bronquite , Vírus da Bronquite Infecciosa , Animais , Vírus da Bronquite Infecciosa/genética , Galinhas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Aves Domésticas , Bronquite/prevenção & controle , RNA
15.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851216

RESUMO

Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.

16.
Viruses ; 15(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851499

RESUMO

Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.


Assuntos
Herpesvirus Galináceo 2 , Linfócitos Intraepiteliais , Doença de Marek , Animais , Galinhas , Leucócitos Mononucleares , Doença de Marek/prevenção & controle , Receptores de Antígenos de Linfócitos T gama-delta , Mamíferos
17.
Front Vet Sci ; 10: 1329430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313768

RESUMO

Infectious bronchitis (IB) is a highly contagious and acute viral disease of chicken caused by the infectious bronchitis virus (IBV) of the family Coronaviridae. Even with extensive vaccination against IB by the poultry industry, the occurrence of new IBV genotypes is a continuous challenge encountered by the global poultry industry. This experiment was designed to compare the pathogenicity of two IBV strains belonging to Massachusetts (Mass) and Delmarva DMV/1639 genotypes. Specific pathogen-free laying hens were challenged during the peak of production (30 weeks), keeping a mock-infected control group. During 21 days of observation following infection, a significant drop in egg production with miss-shaped and soft shells was observed in the DMV/1639 IBV-infected hens only. The DMV/1639 IBV infected group showed prolonged and higher cloacal viral shedding compared with the Mass IBV-infected group. At the end of the study (21 days post-infection), the viral genome loads in the respiratory, urogenital, and immune tissues were significantly higher in the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Macroscopic lesions such as distorted ova leading to egg peritonitis were observed only in the DMV/1639 IBV-infected group. Moreover, microscopic lesion scores were significantly higher in the lung, kidney, cecal tonsils, and oviduct of the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Finally, the apoptosis index in the kidney, ovary, magnum, isthmus, and shell gland was significantly higher in the DMV/1639 IBV-infected group compared with the control and Mass-infected groups. This study examined the pathogenicity of two IBV genotypes that are impacting the layer industry in North America.

18.
Genes (Basel) ; 13(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140785

RESUMO

Genetic diversity and evolution of infectious bronchitis virus (IBV) are mainly impacted by mutations in the spike 1 (S1) gene. This study focused on whole genome sequencing of an IBV isolate (IBV/Ck/Can/2558004), which represents strains highly prevalent in Canadian commercial poultry, especially concerning features related to its S1 gene and protein sequences. Based on the phylogeny of the S1 gene, IBV/Ck/Can/2558004 belongs to the GI-17 lineage. According to S1 gene and protein pairwise alignment, IBV/Ck/Can/2558004 had 99.44-99.63% and 98.88-99.25% nucleotide (nt) and deduced amino acid (aa) identities, respectively, with five Canadian Delmarva (DMV/1639) IBVs isolated in 2019, and it also shared 96.63-97.69% and 94.78-97.20% nt and aa similarities with US DMV/1639 IBVs isolated in 2011 and 2019, respectively. Further homology analysis of aa sequences showed the existence of some aa substitutions in the hypervariable regions (HVRs) of the S1 protein of IBV/Ck/Can/2558004 compared to US DMV/1639 isolates; most of these variant aa residues have been subjected to positive selection pressure. Predictive analysis of potential N-glycosylation and phosphorylation motifs showed either loss or acquisition in the S1 glycoprotein of IBV/Ck/Can/2558004 compared to S1 of US DMV/1639 IBV. Furthermore, bioinformatic analysis showed some of the aa changes within the S1 protein of IBV/Ck/Can/2558004 have been predicted to impact the function and structure of the S1 protein, potentially leading to a lower binding affinity of the S1 protein to its relevant ligand (sialic acid). In conclusion, these findings revealed that the DMV/1639 IBV isolates are under continuous evolution among Canadian poultry.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Aminoácidos/genética , Animais , Canadá , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Genótipo , Glicoproteínas/genética , Vírus da Bronquite Infecciosa/genética , Ligantes , Ácido N-Acetilneuramínico , Nucleotídeos , Aves Domésticas
19.
Infect Genet Evol ; 104: 105350, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35977653

RESUMO

Infectious laryngotracheitis (ILT), caused by infectious laryngotracheitis virus (ILTV), occurs sporadically in poultry flocks in Canada. Live attenuated chicken embryo origin (CEO) vaccines are being used routinely to prevent and control ILTV infections. However, ILT outbreaks still occur since vaccine strains could revert to virulence in the field. In this study, 7 Canadian ILTV isolates linked to ILT outbreaks across different time in Eastern Canada (Ontario; ON and Quebec; QC) were whole genome sequenced. Phylogenetic analysis confirmed the close relationship between the ON isolates and the CEO vaccines, whereas the QC isolates clustered with strains previously known as CEO revertant and wild-type ILTVs. Recombination network analysis of ILTV sequences revealed clear evidence of historical recombination between ILTV strains circulating in Canada and other geographical regions. The comparison of ON CEO clustered and QC CEO revertant clustered isolates with the LT Blen® CEO vaccine reference sequence showed amino acid differences in 5 and 12 open reading frames (ORFs), respectively. Similar analysis revealed amino acid differences in 32 ORFs in QC wild-type isolates. Compared to all CEO vaccine strains in the public domain, the QC wild-type isolates showed 15 unique mutational sites leading to amino acid changes in 13 ORFs. Our outcomes add to the knowledge of the molecular mechanisms behind ILTV genetic variance and provide genetic markers between wild-type and vaccine strains.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Aminoácidos/genética , Animais , Embrião de Galinha , Galinhas , Marcadores Genéticos , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Ontário , Filogenia , Análise de Sequência de DNA , Vacinas Atenuadas/genética , Vacinas Virais/genética
20.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016082

RESUMO

Vaccination is the most important way to control infectious bronchitis (IB) in chickens. Since the end of 2015, the Delmarva (DMV)/1639 strain of infectious bronchitis virus (IBV) has caused significant damage to the layer flocks in Eastern Canada. The efficacy of a combination of existing IB vaccines licensed in Canada was assessed against experimental challenge with this IBV strain. The layer pullets were vaccinated during the rearing phase with live attenuated IB vaccines of Massachusetts (Mass) + Connecticut (Conn) types followed by an inactivated IB vaccine of Mass + Arkansas (Ark) types and then challenged with the Canadian IBV DMV/1639 strain at 30 weeks of age. Protection was evaluated based on the egg laying performance, immune responses, viral shedding, and viral genome loads and lesions in IBV target organs. The vaccinated challenged hens were protected from the drop in egg production observed in the non-vaccinated challenged hens. Early (5 dpi) anamnestic serum antibody response was measured in the vaccinated challenged hens as well as a significant level of antibodies was detected in the oviduct washes (14 dpi). In contrast, hens in the non-vaccinated challenged group showed delayed (12 dpi) and significantly lower serum antibody response. Viral RNA loads were reduced in the respiratory, alimentary, and reproductive tissues of the vaccinated challenged hens compared to the non-vaccinated challenged hens. Compared to the control groups, the vaccinated challenged hens had less marked microscopic lesions in the trachea, kidney, magnum, and uterus. Our experimental model demonstrated inconclusive results for cell-mediated immune responses and viral shedding. Overall, the vaccination program used in this study minimized viral replication and histopathological changes in most IBV target organs and protected challenged hens against drop in egg production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...